Chapter 4: Please review the Algebra Toolbox

Section 4.1: Transformations of Graphs

*Check out the artwork of MC Escher, the "king of transformations"

Constant Function
\[y = f(x) = \text{some number} \]
\[y = 3 \]

Identity Function
\[f(x) = x \]

```
\begin{align*}
\text{y = 3} & \quad \text{horizontal line} \\
\end{align*}
```

```
\begin{align*}
(2, 2) & \\
(-1, -1) & \\
\end{align*}
```
Basic Quadratic Function
\[f(x) = x^2 \]

Square Root Function
\[f(x) = \sqrt{x} = x^{\frac{1}{2}} = \text{sgrt}(x) \]
Basic Cubic Function
\[f(x) = x^3 \]

Cube Root Function
\[f(x) = \sqrt[3]{x} = x^{\frac{1}{3}} = \text{root}(3, x) \]
Absolute Value Function

\[f(x) = |x| = \text{abs}(x) \]

- \[x, \text{ if } x \geq 0 \]
- \[-x, \text{ if } x < 0 \]

Greatest Integer Function

\[f(x) = [x] = \text{floor}(x) \]

- \([3.7] = 3\)
- \([12] = 12\)
- \([4.999] = 4\)
- \([-3.2] = -4\)

The greatest integer that is less than or equal to \(x\).
Graph Transformations

For a given function $y = f(x)$,

Vertical Shift

(y-up/down)

$y = f(x) + k$

Graph is shifted k units up if $k > 0$ and k units down if $k < 0$.

Horizontal Shift

(x-left/right)

$y = f(x - h)$

Graph is shifted h units right if $h > 0$ and h units left if $h < 0$.

Stretch/Compress

(y-vertical)

$y = af(x)$

Graph is vertically stretched by a factor of $|a|$ if $|a| > 1$.

Graph is compressed by a factor of $|a|$ if $|a| < 1$.

Reflection

$y = -f(x)$

Graph is reflected across the x-axis.

$y = f(-x)$

Graph is reflected across the y-axis.
Ex Horizontal Shifts

\[f(x) = \sqrt{x} \]

Graph

\[g(x) = \sqrt{x-2} \quad \text{and} \quad h(x) = \sqrt{x+1} \]

\[= f(x-2) \]
\[= f(x-h) \]

where \(h = 2 > 0 \)

Shift \(f \) 2 units right

\[= f(x+1) \]
\[= f(x-(-1)) \]
\[= f(x-h) \]

where \(h = -1 < 0 \)

Shift \(f \) 1 unit left

\((0,0) \)
\((2,0) \)
\((-1,0) \)
Unconventional Vehicle Sales The number of E85 flex fuel vehicles, in millions, projected to be sold in the United States can be modeled by the function \(F(x) = 0.084x^{0.675} \), where \(x \) is the number of years after 2000. Convert the function so that \(x \) equals the number of years after 1990.

(Source: www.eia.gov)

<table>
<thead>
<tr>
<th>Years</th>
<th>(x)</th>
<th>(F(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
<td>0.084(0)^{0.675} = 0 millions</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>0.084(1)^{0.675} = 0.084 millions</td>
</tr>
<tr>
<td>2005</td>
<td>5</td>
<td>0.084(5)^{0.675} \approx 0.249 millions</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
<td>(F(10) \approx 0.397) millions</td>
</tr>
</tbody>
</table>

\(F(x) = 0.084x^{0.675} \)

\[G(x) = 0.084(x - 10)^{0.675} \]

\[G(x) = F(x - 10) \]

\(h = 10 > 0 \) so shift \(F \) 10 units RIGHT.
Exercise 7: Vertical Stretch + Shrink

\[\text{Graph } g(x) = 2x^2 = 2f(x) \]

\[\text{Graph } h(x) = \frac{1}{3}x^2 = \frac{1}{3}f(x) \]

\[h(x) = -3x^2 = -3f(x) \]
Example

Reflections

\[f(x) = \sqrt{x} \]

Graph \[g(x) = \sqrt{-x} = f(-x) \]
reflect \(f \) over y-axis

\[h(x) = -\sqrt{x} = -f(x) \]
reflect \(f \) over x-axis

\[y = \sqrt{x} \]

Domain: \([0, \infty)\)
Range: \([0, \infty)\)

\[y = \sqrt{-x} \]

Domain: \((-\infty, 0]\)
Range: \([0, \infty)\)

\[y = -\sqrt{x} \]

Domain: \([0, \infty)\)
Range: \((-\infty, 0]\)
Ex. Vertical Shifts

\[f(x) = |x| \]

Graph \[g(x) = |x| - 2 = f(x) - 2 \]
and \[h(x) = |x| + 1 = f(x) + 1 \]
Marijuana Use The number of millions of people age 12 and older in the United States who used marijuana during the years 2003 to 2008 is described by the function $M(x) = -0.062(x - 4.8)^2 + 25.4$ for $3 \leq x \leq 8$, where x is the number of years after 2000.

a. The graph of this function is a shifted graph of which basic function? $f(x) = x^2$

b. Find and interpret $M(3)$.

c. Sketch a graph of $y = M(x)$ for $3 \leq x \leq 8$.
(Source: 2008 National Survey on Drug Use and Health, U.S. Department of Health and Human Services)

$M(x) = -0.062(x - 4.8)^2 + 25.4$ quadratic function written in vertex form ...

vertex: $(4.8, 25.4)$ opens ✓ downward b/c lead coeff is negative

Related "Basic" Function: $f(x) = x^2$

b) $M(3)$ represents the number of millions of people in the US age 12 and older who used marijuana in 2003.

$M(3) = -0.062(3 - 4.8)^2 + 25.4 \approx 25.2$ million people

c) Graph Program!
Review Symmetry and Even vs. Odd Functions on your own!

Reflections vs. Symmetry

reflect: verb → you do the manipulation

symmetry: a property of an object; a graph "has symmetry" or "does not have symmetry"

3 types of symmetry for graphs

1. Symmetry about y-axis
2. Symmetry about x-axis
3. Symmetry about the origin
Symmetry about y-axis

- The left and right "sides" (relative to the y-axis) are "the same."

- If \((a, b)\) is on the graph, then so is \((-a, b)\).
Symmetry about x-axis

* The top and bottom (relative to the x-axis) are the same.

* If (a, b) is on the graph, then so is $(a, -b)$.

* Note that any graph that is symmetric about the x-axis is NOT a function (except for a graph where every point on the graph has y-coord 0).
Symmetry about the Origin

If you ROTATE the graph 180°, the “new graph” looks just like the original graph.

If \((a, b)\) is on the graph, then so is \((-a, -b)\).

Also symmetric about the x-axis and the y-axis.
Even vs. Odd Functions

* A function is **even** if \(f(-x) = f(x) \); if \((a,b)\) is on the graph of \(f\), then so is \((-a,b)\).

 * If \(f\) is even, the graph of \(f\) will be symmetric about the \(y\)-axis.

* A function is **odd** if \(f(-x) = -f(x) \); if \((a,b)\) is on the graph of \(f\), then so is \((-a,-b)\).

 * If \(f\) is odd, the graph of \(f\) will be symmetric about the origin.
Ex Even, odd, or neither?

a) \(f(x) = 3x^4 - 5x^2 + 6 \)

\[
f(-x) = 3(-x)^4 - 5(-x)^2 + 6 = 3x^4 - 5x^2 + 6 = f(x)
\]

\(\star \) Since \(f(-x) = f(x) \), this function is even.

b) \(f(x) = 5x^3 - 7x^2 + 2x - 3 \)

\[
f(-x) = 5(-x)^3 - 7(-x)^2 + 2(-x) - 3 = -5x^3 - 7x^2 - 2x - 3 \\
\neq f(x) \quad \text{and} \quad \neq -f(x)
\]

\(\star \) Since \(f(-x) \neq f(x) \) and \(f(-x) \neq -f(x) \), this function is neither even nor odd.
c) \(f(x) = 4x^7 - 6x^3 + 12x \)

\[
f(-x) = 4(-x)^7 - 6(-x)^3 + 12(-x) \\
= -4x^7 + 6x^3 - 12x \\
= -f(x)
\]

* Since \(f(-x) = -f(x) \), this function is odd.