Section 3.3: Piecewise-Defined Functions and Power Functions

A piecewise-defined function: a function that is "broken" into "pieces".

\[
\text{Example: } f(x) = \begin{cases}
3x + 1, & \text{if } x < 0 \\
x^2, & \text{if } x \geq 0
\end{cases}
\]

\[f(-1) = 3(-1) + 1 = -2\]
\[f(-2) = 3(-2) + 1 = -5\]
\[f(0) = 0^2 = 0\]
\[f(1) = 1^2 = 1\]
\[f(2) = 2^2 = 4\]
Postal Rates

<table>
<thead>
<tr>
<th>Weight Not Over (ounces)</th>
<th>Cost is (C(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0.49</td>
</tr>
<tr>
<td>2</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
</tr>
<tr>
<td>3.5^1</td>
<td>1.15</td>
</tr>
</tbody>
</table>

\[
C(x) = \begin{cases}
 \$0.49, & \text{if } 0 < x \leq 1 \\
 \$0.71, & \text{if } 1 < x \leq 2 \\
 \$0.93, & \text{if } 2 < x \leq 3 \\
 \$1.15, & \text{if } 3 < x \leq 3.5
\end{cases}
\]

* Graph the function

* This type of piecewise-defined function is called a step function.
Exercise

Graph: \[f(x) = \begin{cases} 5x + 2, & 0 \leq x < 3 \\ x^3, & 3 \leq x \leq 5 \end{cases} \]

Compute:

1. \(f(-1) \) is undefined
2. \(f(0) = 5(0) + 2 = 2 \)
3. \(f(1) = 5(1) + 2 = 7 \)
4. \(f(2) = 5(2) + 2 = 12 \)
5. \(f(3) = 3^3 = 27 \)
6. \(f(4) = 4^3 = 64 \)
7. \(f(5) = 5^3 = 125 \)
8. \(f(6) \) is undefined
Absolute Value Function

\[f(x) = |x| = \text{abs}(x) = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \geq 0 \end{cases} \]

| x | |x| |
|----|----|
| -2 | 2 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
Ex: Graph \(f(x) = |x-4| \)

| \(x \) | \(|x-4| \) |
|------|-------|
| -3 | 7 |
| -2 | 6 |
| -1 | 5 |
| 0 | 4 |
| 1 | 3 |
| 2 | 2 |
| 3 | 1 |
| 4 | 0 |
| 5 | 1 |
| 6 | 2 |
| 7 | 3 |

b) Compute \(f(-2) = 6 \) and \(f(5) = 1 \)

c) What is the domain of \(f(x) = |x-4| \)? All real numbers: \(\mathbb{R} = (-\infty, \infty) \)

What is the range? \([0, \infty) \)
Exercise Find the domain and range of \(f(x) = \frac{1}{x+2} \).

- **Domain:** all reals except \(-2\): \(\exists x : x \neq -2 \),
or \((-\infty, -2) \cup (-2, \infty) \)

- **Range:** since \(\frac{1}{x+2} \neq 0 \), range is \(\exists y : y > 0 \),
= \((0, \infty) \)

- \(f \) is increasing on \((-\infty, -2) \)
- \(f \) is decreasing on \((-2, \infty) \)
Power Functions

power function: \(f(x) = a \cdot x^b \), where \(a, b \) are real numbers and \(b \neq 0 \).

- \(y = mx \) — linear function
- \(y = ax^2 \) — quadratic function
- \(y = ax^3 \) — cubic power function
Squaring Function \[y = x^2 \]
Cubing Function \[y = x^3 \]
Square Root Function \[y = \sqrt{x} = x^{\frac{1}{2}} \quad \text{domain: } [0, \infty) \]
Cube Root Function

\[y = \sqrt[3]{x} = x^{\frac{1}{3}} \]

domain: \((-\infty, \infty)\)
Reciprocal Function

Graph is called a hyperbola.

\[y = \frac{1}{x} = x^{-1} \]

Domain: \((-\infty, 0) \cup (0, \infty)\)

Range: \((-\infty, 0) \cup (0, \infty)\)

Horizontal asymptote at the line \(y = 0\)

Vertical asymptote at the line \(x = 0\)
Harvesting A farmer’s main cash crop is tomatoes, and the tomato harvest begins in the month of May. The number of bushels of tomatoes harvested on the xth day of May is given by the equation $B(x) = 6(x + 1)^{3/2}$. How many bushels did the farmer harvest on May 8?

$B(x) = 6(x + 1)^{3/2}$

Compute $B(8) = 6(8 + 1)^{3/2}$

$= 6 \cdot 9^{3/2}$

$= 6 \cdot (\sqrt[3]{9})^3$

$= 6 \cdot 3^3 = 6 \cdot 27 = 162$
Taxi Miles The Inner City Taxi Company estimated, on the basis of collected data, that the number of taxi miles driven each day can be modeled by the function $Q = 489L^{0.6}$, when they employ L drivers per day.

a. Graph this function for $0 \leq L \leq 35$.

b. How many taxi miles are driven each day if there are 32 drivers employed?

c. Does this model indicate that the number of taxi miles increases or decreases as the number of drivers increases? Is this reasonable?

\[Q(L) = 489L^{0.6} \]

is a power function

\[f(x) = 489x^{0.6} \text{ over } [0, 35] \]

Done in Graph!

b) \[Q(32) = f(32) = 489 \cdot 32^{0.6} = 3912 \text{ miles driven by 32 drivers} \]

c) It appears that as the number of drivers increases, so does the number of taxi miles driven.