1. Five point charges q and four Gaussian surfaces S are shown.

 a. What is the total electric flux through surface S_1?

 Zero, since there is no charge enclosed by the surface.

 b. What is the total electric flux through surface S_4?

 \[\Phi_E = \frac{q_{\text{in}}}{\varepsilon_0} = \frac{2q}{\varepsilon_0} \]

2. A solid ball of radius r_b has a uniform charge density ρ.

 a. What is the magnitude of the electric field $E(r)$ at a distance $r > r_b$ from the center of the ball?

 \[\Phi_E = \oint E \cdot d\vec{A} = \int E dA = EA = E \pi r^2 \]

 \[\Phi_E = \frac{q_{\text{in}}}{\varepsilon_0} = \frac{4/3 \pi r_b^3 \rho}{\varepsilon_0} \]
\[E 4\pi r^2 = \frac{4/3\pi r_b^3 \rho}{\varepsilon_0} \]

\[E = \frac{\frac{1}{3\varepsilon_0}}{r^2} \]

c. What is the magnitude of the electric field \(E(r) \) at a distance \(r<r_b \) from the center of the ball?

\[\Phi_E = \oint E \cdot d\mathbf{A} = \int EdA = E \int dA = EA = E 4\pi r^2 \]

\[\Phi_E = \frac{q_{in}}{\varepsilon_0} = \frac{4/3\pi r^3 \rho}{\varepsilon_0} \]

\[E 4\pi r^2 = \frac{4/3\pi r^3 \rho}{\varepsilon_0} \]

\[E = \frac{\rho}{3\varepsilon_0 r} \]