Math 3005 – Section 5.2 Homework

5.7 Prove that there is no largest negative rational number.

Proof. Assume, to the contrary, that there is a largest negative rational number; call it \(r \). Then \(2r \), which is the product of two rational numbers, is a negative rational number. Since \(2r \) is farther from 0 than \(r \) is, we have that \(2r < r \), which implies that \(r < r/2 \). Now, \(r/2 = \frac{1}{2}r \) is the product of two rational numbers, so \(r/2 \) a negative rational number that is larger than \(r \), resulting in a contradiction. \(\square \)

5.16 Prove that \(\sqrt{3} \) is irrational.

Before we begin the proof, we note the following lemma, which was proven in the homework for Chapter 4, Exercise 4.3.

Lemma. Let \(m \in \mathbb{Z} \). Then \(3 \mid m \) if and only if \(3 \mid m^2 \).

Proof. Assume, to the contrary, that \(\sqrt{3} \) is rational. Then \(\sqrt{3} = p/q \) for some integers \(p \) and \(q \), where \(q \neq 0 \) and \(p \) and \(q \) have no common factors. Thus, \(p^2 = 3q^2 \), which implies that \(3 \mid p^2 \). By the lemma above, we conclude that \(3 \mid p \); that is, \(p = 3k \) for some integer \(k \). Now, \(3q^2 = (3k)^2 \) implies that \(q^2 = 3k^2 \), or equivalently, that \(3 \mid q^2 \). Again, by the lemma, we conclude that \(3 \mid q \). Since \(3 \mid p \) and \(3 \mid q \), the integers \(p \) and \(q \) have a common factor, resulting in a contradiction. \(\square \)