1. The Rent-a-Car Company charges $30.50 per day car rental. They also charge $0.24 per mile driven if you return the car with less than a full tank of gas. Write a function \(C(m) \) to describe the total cost for someone who rented a car for one day and did not fill the gas tank before returning the car, if \(m \) miles were driven. Then use your model to find the cost for someone who drove 120 miles.

2. A business uses straight-line depreciation to determine the value \(y \) of an automobile over a 5-year period. Suppose the original value (when \(t = 0 \)) is equal to $23,500 and the salvage value (when \(t = 5 \)) is equal to $8500.
 a. By how much has the automobile depreciated over the 5 years?
 b. By how much is the value of the automobile reduced at the end of each of the 5 years?
 c. Write the linear equation that models the value \(x \) of this automobile at the end of year \(t \).

3. Each day a young person should sleep 8 hours plus \(\frac{1}{4} \) hour for each year the person is under 18 years of age.
 a. Based on this information, how much sleep does a 10-year-old need?
 b. Based on this information, how much sleep does a 14-year-old need?
 c. Use the answers from parts (a) and (b) to write a linear equation relating hours of sleep \(y \) to age \(x \), for \(6 \leq x \leq 18 \).
 d. Use our equation from part (c) to verify that an 18-year-old needs 8 hours of sleep.

4. The value of an initial investment of $2350 each year for the first 5 years is shown in the table below.

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value ($)</td>
<td>2350</td>
<td>2525</td>
<td>2700</td>
<td>2875</td>
<td>3050</td>
<td>3225</td>
</tr>
</tbody>
</table>

 a. Find the average rate of change of the value of the investment with respect to the number of years.
 b. Use the average rate of change and a point to write an equation of a linear model for this data.