A conceptual framework for managing modifiable risk factors for cardiovascular diseases in Fiji

Authors
Trevor Witter
School of Sport and Exercise, Massey University, PO Box 756, Wellington 6140, New Zealand
Email: trevorgwitter@gmail.com

Melanie Poudevigne
Health & Fitness Management Program, Office of the Dean, Clayton State University, Morrow, GA, USA

Danielle M Lambbrick
Institute of Food, Nutrition and Human Health, Massey University, Wellington, New Zealand

James Faulkner and Adam A Lucero
School of Sport and Exercise, Massey University, Wellington, New Zealand

Rachel Page
Institute of Food, Nutrition and Human Health, Massey University, Wellington, New Zealand

Lane G Perry III
Western Carolina University, Cullowhee, NC, USA

Michael A Tarrant
Warnell School of Forestry, University of Georgia, Athens, GA, USA

Lee Stoner
School of Sport and Exercise, Massey University, Wellington, New Zealand

Corresponding author: Trevor Witter, as above

Keywords
heart disease; lifestyle; health gap; culture; disparity; nutrition; Fiji

Abstract

Aims: The current review will look at modifiable lifestyle (physical inactivity, poor nutrition, risky alcohol behavior and cigarette smoking) and cardio-metabolic (obesity, diabetes mellitus, high cholesterol and high blood pressure) cardiovascular disease (CVD) risk factors among Indigenous-Fijian and Indo-Fijian subgroups. A framework for monitoring and managing these risk factors will be presented.

Methods: National health surveys were identified where available. Electronic databases identified sources for filling missing data. The most relevant data were identified, organized and synthesized.

Results: Compared to Indo-Fijians, Indigenous-Fijians have higher rates of obesity (17% vs 11%) and hypertension (21% vs 16%), but lower rates of diabetes mellitus (12% vs 21%) and high cholesterol (33% vs 39%). Indigenous-Fijians report higher rates of prescribed physical activity (25% vs 21%), but poorer recommended vegetable intake (48% vs 56%), greater risky alcohol behavior (17% vs 15%) and a much greater prevalence of cigarette smoking (45% vs 24%). Both Indigenous-Fijians and Indo-Fijians report a low prevalence of recommended fruit intake (17% vs 15%).

Conclusions: Fiji is progressing through demographic and epidemiological transitions, including a decline in infectious diseases and improved life expectancy. However, in concert with other developing nations, ‘modernization’ is accompanied by increased mortality from non-communicable diseases, with CVD being the most prevalent. This transition has been associated with changes to socio-cultural aspects of Fiji, including poor lifestyle choices that may contribute to a cluster of cardio-metabolic conditions which precede CVD.

INTRODUCTION
The Republic of Fiji, in concert with other developing Pacific Island nations, have seen a decrease in infectious diseases and a significant rise in the prevalence of non-communicable diseases (NCDs), most notably cardiovascular disease (CVD).1 CVD has become the leading cause of death,1 with proportional mortality increasing from around 20% in the 1960s to over 45% today.2 Limited data are available comparing Fiji’s two main ethnic groups (Indigenous-Fijian and Indo-Fijian), though at least one study has found higher CVD mortality rates among Indigenous-Fijian men compared to Indo-Fijian men; after accounting for all other measured risk factors, the relative risk (RR) for CVD mortality was lower among Indo-Fijian men (RR = 0.49, 95% confidence interval (CI): 0.30–0.82) but not women (RR = 0.58, 95% CI: 0.32–1.05).3 The same study also found deaths due to coronary heart disease (CHD) to be higher in urban compared to rural areas.

A cluster of modifiable cardio-metabolic risk factors precede CVD, including obesity, diabetes, high cholesterol and high blood pressure (see Table 1 for guidelines). In turn, modifiable
lifestyle risk factors contribute to the development of this cluster of cardio-metabolic conditions (conceptualized in Figure 1). Modifiable lifestyle risk factors include, but are not limited to, physical inactivity, poor dietary choices, cigarette smoking and risky alcohol behavior. Multiple studies have revealed that modifiable risk factors are responsible for a large number of premature deaths due to CVD.\(^{17,18}\) A study by Danaei et al.\(^{17}\) reported that the single largest risk factor for cardiovascular mortality in the United States was high blood pressure, responsible for 45% of all cardiovascular deaths, followed by obesity, physical inactivity, high cholesterol and smoking. Notably, many of these metabolic and lifestyle risk factors are relatively simple to monitor and track (Table 1).

The aim of the current review is to look at cardio-metabolic (overweight-obesity, diabetes, high cholesterol and high blood pressure) and modifiable lifestyle (physical inactivity, poor nutrition, risky alcohol behavior and cigarette smoking) risk factors among Indigenous-Fijian and Indo-Fijian adults in the available literature. The discussion will focus on the causal relationship between modifiable lifestyle risk factors and cardio-metabolic conditions in the Fijian population. The review will finish with recommendations for future direction.

METHODS

Data sources

Electronic databases included PubMed, Medline and Google Scholar. All titles were exported to Endnote and checked for duplicates.

Study inclusion and exclusion criteria

National health surveys were identified where available. Electronic databases identified sources for filling missing data and to support data extracted from national health surveys. Articles were included if they were (1) published in a peer-reviewed English-language journal or government report; (2) controlled studies; (3) cited in health science, nursing or medical literature and (4) for the purpose of the primary end points (Tables 2 and 3), the largest sample studies published between 2002 and 2012. Articles were excluded if they did not meet these criteria. For the purpose of the primary end point, an electronic database search identified 59 articles, of which 4 met the inclusion criteria.

Data extraction and data synthesis

Search terms included Fijian, Indo-Fijian, Indigenous-Fijian, cardiovascular disease, heart disease, overweight, obesity, diabetes, cholesterol, blood pressure, hypertension, alcohol, physical activity, exercise, nutrition, cigarette smoking and tobacco. The most relevant data were identified, organized and synthesized.

RESULTS

Demographics

For the purpose of this review, the term Indigenous-Fijian (iTauki) refers to the original inhabitants of Fiji, who are a mixture of Polynesian and Melanesian descent. The term Indo-Fijian refers to those of Indian descent, whose ancestors were brought to Fiji as indentured servants to work in the sugarcane fields between 1879 and 1916.\(^{24}\) The two cultures remain distinct and co-exist in a political climate that has resulted in four coups in the past two decades. Of the approximately 834,000 Fijian residents, 57% are Indigenous-Fijian and 37% Indo-Fijian (Table 2).\(^{18}\) In 1986, 1 year prior to the first coup, the population was composed of 49% Indo-Fijian and 46% Indigenous-Fijian.\(^{25}\) Indigenous-Fijians live throughout the country, typically on land under native title, while the Indo-Fijians reside primarily near the urban centers and in the cane-producing areas of the two main islands, Viti Levu and Vanua Levu. While the Fijian population is relatively young, their median age of 26.9 years is greater than the median age of 21.6 years in the Melanesian region.\(^{26}\)

Modifiable cardio-metabolic risk factors

The following section will highlight the prevalence of modifiable cardio-metabolic risk factors in Fiji for CVD: obesity, diabetes, high cholesterol and high blood pressure (see Table 2). Each of these risk factors is relatively simple to measure and monitor.

Obesity

Excess body fat increases the risk of developing a range of health problems, including high blood pressure, diabetes mellitus and CVD.\(^{27-29}\) Population studies, including those available for use in this study, typically estimate the prevalence of overweight/obesity by calculating an individual’s body mass index (BMI) score.\(^{30}\) Despite widespread use, BMI has been heavily criticized.\(^{31-36}\) BMI is calculated by dividing weight by height, and it is assumed that body weight equates to body fat. Romero-Corral et al.\(^{31}\) undertook a meta-analysis to determine the nature of the relationship between obesity and cardiovascular mortality in patients with CHD. Patients with severe obesity (BMI > 35) had the greatest RR for cardiovascular mortality (RR = 1.88) compared to people with a normal BMI (BMI = 20–24.9). However, overweight patients (BMI = 25–29.9) had the lowest risk (RR = 0.88), and obese patients (BMI > 30) had no increased risk (R = 0.97). The authors suggested that these findings could be explained by the lack of discriminatory power of BMI to differentiate between body fat and lean mass. Waist-to-hip ratio (WHR) serves as an alternative body composition measurement and takes body-fat distribution into greater consideration, especially abdominal obesity.\(^{37}\) A number of studies investigating a range of ethnic groups have found WHR to better predict cardio-metabolic and cardiovascular risk factors than BMI.\(^{32-36}\) However, studies over the past two decades indicate that cutoffs for WHR differ by ethnic groups; therefore, the reference values provided in Table 1 should be used to provide a guideline,\(^{7}\) not to ascertain absolute risk.

The Pacific region is ranked among the highest for the prevalence of obesity in the world.\(^{39}\) and Fiji is no exception with a doubling in obesity over the past decades.\(^{39}\) The 2002 Fiji Non-Communicable Disease STEPlwise approach to surveillance of non-communicable diseases (NCD STEPS) survey reported that 29% of the adult (15–64 years) population

76 Perspectives in Public Health I March 2015 Vol 135 No 2
were overweight, with an additional 18% obese. Generally, females had a higher BMI than males (mean BMI 26.7 vs 24.2), and the burden of overweight/obesity was greater among Indigenous-Fijians (50%) than Indo-Fijians (35%). These findings have been corroborated by other studies, estimating that more than one-third of the population is overweight or obese with higher rates among Indigenous-Fijians, although both groups have increased over recent years.

Diabetes mellitus is a metabolic disease in which high blood glucose levels result from defective insulin secretion, insulin action or both. There are several types of diabetes mellitus, each with a different cause and clinical history. The two most prominent, however, are Type 1 and Type 2 diabetes, which differ according to their underlying pathophysiology, with Type 1 often attributed to an autoimmune response and Type 2 often related to several lifestyle factors. Type 2 diabetes mellitus (T2DM) accounts for 90%–95% of diabetes cases and is a major risk factor for CVD,

Table 1

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Metric</th>
<th>Optimal</th>
<th>Low risk</th>
<th>High risk</th>
<th>Disease outcomes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>High blood pressure</td>
<td>Systolic blood pressure (mmHg)</td>
<td><120</td>
<td>130–139</td>
<td>≥140</td>
<td>CVD, hypertension and renal failure</td>
<td>4</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td><80</td>
<td>80–89</td>
<td>≥90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High blood glucose</td>
<td>Fasting plasma glucose (mg/dL)</td>
<td><100</td>
<td>100–125</td>
<td>≥126</td>
<td>CVD, diabetes and cancers</td>
<td>5</td>
</tr>
<tr>
<td>High cholesterol</td>
<td>LDL-cholesterol (mg/dL)</td>
<td><100</td>
<td>100–129</td>
<td>≥190</td>
<td>CVD</td>
<td>6</td>
</tr>
<tr>
<td>Obesity</td>
<td>Waist:hip ratio M: ≥0.90 and F: ≥0.80</td>
<td>M: ≥0.91 and F: ≥0.81</td>
<td>M: ≥0.95 and F: ≥0.86</td>
<td>CVD, hypertension, diabetes and cancers</td>
<td>7–9</td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td>Standard drinks/day M: ≤1 and F: ≤1</td>
<td>M: ≥3 and F: ≥2</td>
<td>M: ≥5 and F: ≥4</td>
<td>CVD, respiratory disease, cancers, diabetes and digestive disorders</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Poor nutrition</td>
<td>Fruit and vegetable (servings/day)</td>
<td>≥5</td>
<td><5</td>
<td><1</td>
<td>CVD and cancers</td>
<td>11,12</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>Moderate physical activity (min/day)</td>
<td>≥30 min (5 days/week)</td>
<td><30 min/day</td>
<td>Sedentary</td>
<td>CVD, cancers, diabetes and hypertension</td>
<td>13</td>
</tr>
<tr>
<td>Tobacco smoking</td>
<td>Cigarettes/day</td>
<td>0</td>
<td>≥1</td>
<td>≥1</td>
<td>CVD, respiratory disease, cancers, diabetes and hypertension</td>
<td>14,15</td>
</tr>
</tbody>
</table>

Source: Reprinted from Stoner et al

M: males; F: females; CVD: cardiovascular disease; HT: hypertension; LDL: low-density lipoprotein.

T2DM risk can be monitored by measuring glucose tolerance or fasting blood glucose. A fasting blood glucose of <100 mg/dL is considered optimal. The 2002 NCD STEPS survey registered 16% of the adult population (25–64 years) as diabetic, with a further 11% having impaired fasting glucose (>217 mg/dL and <235 mg/dL). Among those with T2DM, 53% were previously un-diagnosed. The prevalence of T2DM was shown to increase with aging, with 5% of 25 to 34-year-olds registering as diabetic compared to 33% of 55 to 64-year-olds. The T2DM burden is particularly pronounced among the Indo-Fijian, with a prevalence of 21%
Modifying cardiovascular diseases in Fiji

Figure 1

Causation pathway for CVD

Source: Adapted from Stoner et al.16

versus 12% of Indigenous-Fijians. Locality was also shown to be important, with a prevalence of 25% among urban dwellers versus 13% among rural dwellers. More recently, the Fijian Ministry of Health estimated the total prevalence of T2DM at 18%.19

Cholesterol

The two most common blood lipids are cholesterol and triglycerides. These two blood fats are carried on particles called lipoproteins, the most important of which are low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Both carry cholesterol, but it is high LDL-cholesterol levels that have been shown to be proatherogenic,54–58 whereas low levels of HDL-cholesterol are associated with increased CVD morbidity and mortality.59–62 Conversely, high HDL-cholesterol levels convey reduced risk.59–62 A recent survey conducted by the World Health Organization (WHO)23 reported a greater prevalence of high total cholesterol levels (≥213 mg/dL) among Indo-Fijian men (46%) than Indigenous-Fijian men (36%), but not for women (32% vs 31%, respectively). The same report also found greater total cholesterol levels in urban (38%) than rural (35%), and an increased prevalence with age (30% among 18 to 35-year-olds vs 44% for 50 to 65-year-olds).

Hypertension

Hypertension is a major risk factor for CVD. For every 20 mmHg systolic or 10 mmHg diastolic increase in resting blood pressure, there is a twofold increase in mortality from both CHD and stroke.65 Hypertension is associated with shorter overall life expectancy, shorter life expectancy free of CVD, and more years lived with CVD.66 A systolic blood pressure <120 mmHg and a diastolic blood pressure <80 mmHg is considered optimal.4 Blood pressure should be monitored using the auscultatory method, with a properly calibrated device, following 5 minutes quiet rest in a chair.4

In 2002, the prevalence of hypertension in Fiji among 15 to 64-year-olds was 19%, 63% of which were new cases.20 The prevalence of hypertension was greater among Indigenous-Fijians (21%) compared to Indo-Fijians (16%), as was the proportion of uncontrolled previously diagnosed cases (81% vs 58%, respectively), suggesting that hypertension is not being well recognized among Indigenous-Fijians. For both groups, the prevalence of hypertension increased with age, from 9% among 15 to 24-year-olds to 51% among 55 to 64-year-olds. Prevalence is slightly greater among rural dwellers (20%) than urban dwellers (17%). The 2002 STEPS survey23 reported similar rates of hypertension between genders, but more recently, the 2004 National Nutrition Survey reported a higher prevalence among females (19%) than males (14%).39 This high prevalence of hypertension could be explained by poor management, with a high proportion of cases being uncontrolled, particularly among the Indigenous-Fijians.20,39

Modifiable lifestyle risk factors

The following section will discuss the prevalence of physical inactivity, poor nutrition, risky alcohol behavior and cigarette smoking risk (see Table 3). While not exhaustive, these variables represent modifiable lifestyle risk factors, which have been proven to modulate the cardio-metabolic factors discussed above.

Physical activity

Regular physical activity reduces CVD risk in its own right and also improves CVD risk factors such as obesity, diabetes, high cholesterol and hypertension.67–72 It has been estimated that physical inactivity is responsible for 12% of the global burden of myocardial infarction.73 The American College of Sports Medicine (ACSM) recommends at least 30 minutes of moderate-intensity physical activity (e.g. walking briskly, mowing the lawn, dancing, swimming,
Prevalence of cardio-metabolic risk factors among adults

<table>
<thead>
<tr>
<th>Group</th>
<th>CVD</th>
<th>Body weight</th>
<th>Mortality</th>
<th>Overweight</th>
<th>Obesity</th>
<th>Prevalence</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiji</td>
<td>0.84</td>
<td>100</td>
<td>18</td>
<td>16</td>
<td>19</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Indigenous-Fijian</td>
<td>0.48</td>
<td>66</td>
<td>33</td>
<td>N/A</td>
<td>33</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>Indo-Fijian</td>
<td>0.31</td>
<td>68</td>
<td>24</td>
<td>N/A</td>
<td>21</td>
<td>11</td>
<td>38</td>
</tr>
</tbody>
</table>

CVD: cardiovascular disease; HT: hypertension; SBP: systolic blood pressure; DBP: diastolic blood pressure; overweight: body mass index ≥25.0 kg/m²; obese: body mass index ≥30.0 kg/m²; diabetes: blood glucose ≥6.1 mmol/L or currently receiving anti-diabetic medication or controlled diet prescribed by a health worker; high cholesterol: total cholesterol ≥5.5 mmol/L; HT: defined as SBP ≥140 mmHg and/or DBP ≥90 mmHg, or use of antihypertensive medication. 20 CVD, HT, diabetes and body weight data are for adults aged 15–64 years. 20

March 2015 Vol 135 No 2 | Perspectives in Public Health 79
increased over the same period. In 2004, the major source of energy was cereal (bread, flour products, rice, and roti) at 34%, followed by root crops at 24%.

Smoking
Cigarette smoking increases the incidence of CVD in a dose-dependent manner, with even occasional smoking increasing the risk of CVD. The relationship between smoking and CVD results from multiple mechanisms that interact to contribute to atherosclerosis, vascular injury, vascular dysfunction and thrombosis, although the precise mechanisms are largely unknown. Long-term prospective studies have clearly demonstrated the considerable mortality risk reduction associated with smoking cessation.

The 2002 NCD STEPS Survey reported higher rates of cigarette smoking among Indigenous (45%) compared to Indo-Fijians (24%), a higher proportion of males (53%) than females (18%) smoking and smoking was found to be more prevalent in rural (41%) than urban (26%) areas. These findings are corroborated by the earlier National Fijian Adult Substance Use Survey, which reported a total prevalence of 38%. The overall prevalence of smoking increased by 1.4% between 1993 and 2004, with a 4.8% increase in males who smoked up to four cigarettes daily.

Alcohol
Accumulating scientific evidence indicates that light to moderate alcohol consumption may significantly reduce the risk of CVD and all-cause mortality. In contrast, excessive alcohol intake is toxic to both the heart and overall health. The American Heart Association guidelines caution people not to start drinking if they do not already drink alcohol because it is not possible to predict in which people alcohol abuse will become a problem. Alcohol intake can be monitored using a food frequency survey (see ‘Nutrition’ section above).

The 2002 NCD STEPS Survey estimated the prevalence of current alcohol consumption (consumed alcohol in the last 12 months) among 15 to 64-year-olds at 24%. However, rates of risky alcohol consumption were high at 17% for Indigenous-Fijian versus 15% for Indo-Fijians. The same survey reported that males (40%) were more likely than females (6%) to consume any alcohol, and were also more likely to exhibit risky alcohol consumption behavior (80% vs 59% among males vs females who currently consume alcohol). These findings have been corroborated by the National Nutrition Survey, which also reported a higher prevalence of alcohol consumption in urban (35%) than rural (20%) areas.

DISCUSSION
Fiji can be considered a developing nation. As countries move through the demographic and epidemiological transitions, declines in under-nutrition and infectious diseases are reflected in improvements in life expectancy. However, the rise in modernization is accompanied by increased mortality from NCDs, most notably CVD. A recent report indicates that 82% deaths in Fiji are attributed to NCDs with CVD leading the way. A cluster of cardio-metabolic diseases contribute to the progression of CVD, which can be tackled together since they have common causes known as the lifestyle risk factors described in this review. However, as will be discussed, the government must play a key role in setting priorities for interventions to fight these diseases.

Socio-cultural aspects play an important role in the prevalence of obesity in Fiji. As with many Pacific Island nations, there is no vernacular term for obesity in the Fijian language, and Fijians perceive being larger as indicative of good health and good relationships. For example, Fijian males found a thicker female physique more attractive than comparable Australian male subjects. However, these perceptions are deeply rooted in traditional Fijian
society and cannot entirely explain the doubling in obesity over the past decade. The prevalence of obesity has been exacerbated by the ‘Westernization’ of Fiji, in particular the resultant increase in physical inactivity that arises from urbanization, along with poor dietary choices that result from exposure to westernized culture.

Prior to colonization by the British, food consumption patterns included root crops, tropical fruits and vegetables, fish and game, all foods rich in nutrients and low in processed sugars and fat. Today, the main drivers of food choices appear to be cost and convenience. Overall, the food environment is unsupportive of healthy eating for many, particular urban dwellers, where prices for local foods such as fish and root crops are high relative to the average wage. There is limited access to healthier options in settings such as restaurants and schools, and marketing is heavily skewed toward the promotion of less healthy foods. Effective action on obesity involves addressing the right to information to make informed choices about activity and diet (e.g. food labels that people can understand), as well as the right to health care for medical access.

The rate of diabetes in Fiji has also been attributed to physical inactivity and poor food choices. Decreased consumption of traditional root crops in Fiji has been attributed to urbanization, the abolition of a regulation requiring Fijian males to produce sufficient crops for their families, and the substitution of root crops with cereals. The decreased consumption of fruit and green vegetables in Fiji is due in part to the rural–urban shift, including the decrease in space for gardening. The recent importation of processed white flour, white rice and added sugars has contributed to the increasing rates of diabetes, obesity, hypertension and high cholesterol.

Increased physical inactivity, along with the type and frequency of physical activities, has been attributed to the rise in urbanization. For example, urban-dwelling Fijian adults engaged in less frequent and less strenuous activities than rural dwellers. The gender differences in obesity appear to reflect the relative status of males and females in Fiji, with an energy imbalance being created by differential patterns of eating and household and recreational activities. The impact of hierarchical structures and status variables on patterns of eating, physical activity and body size for Fijians remains an important consideration for future studies.

With regard to the modifiable risk factors, there is a need to increase awareness among health care providers serving Fijian peoples. Health care providers and systems should offer accurate information, early screening and treatment, and recommend appropriate behavioral modifications for Fijians. For example, a comprehensive communitarian education campaign could be effective in breaking myths associated with culturally specific tobacco use and in providing alternatives to facilitate the preservation of traditional and celebratory practices. Culturally specific tobacco products should be included in regulations governing the import and sale of tobacco, ensuring taxation statutes and warning label guidelines. Enforcement of tobacco licensing regulations on retailers selling culturally specific products may also curtail access and availability to youth, which is currently both common and socially acceptable in Fiji.

Alcohol consumption is a modifiable lifestyle risk factor that should be tackled by the Fijian government. Development and commercialization is leading the Fijian government to become more dependent upon taxes, tariffs, licensing fees and profits generated from sales of alcohol. Where governments become dependent on these revenue streams, they commonly face the challenge of negotiating two competing interests. For revenue purposes, government officials develop an interest in maintaining high levels of alcohol consumption. Yet, these same officials would like to reduce consumption to control alcohol-related harm. A leadership decision should enhance public health promotion over revenues to protect the community: development and commercialization is leaving local men strained from their political and economic statuses. Increased drinking and alcohol-related violence among them seems associated with a growing sense of demoralization and loss of control.

Finally, the environmental change depicted with climate change can contribute to cardio-metabolic diseases. In general, climate changes can lead to reduction in health because of extreme weather conditions, environmental changes and ecological disruptions, as well as population displacements. In Fiji, those at higher risk of extreme weather tend to be poor, such as Indo-Fijian farmers (living predominantly on floodplains and in grass huts) and children. Following extreme weather conditions, population displacement decreases the use of crops, increases the destruction of local economies and increases resource scarcity and violence. Environmental changes should also be addressed by the government to minimize malnutrition or the use of outside resources that can lead to NCDs.

Conclusion

The current review provides a simple working model, demonstrated in Figure 1, along with guidelines (Table 1), for managing and monitoring CVD in Fiji. Arguably, at the heart of poor lifestyle choices is the interaction between Westernization and socio-cultural aspects of Fiji. Given that Fiji has a strongly embedded hierarchical social structure, the Fijian government, in concert with non-governmental organizations (NGOs), must play a key role in setting priorities for interventions to fight these lifestyle choices and related diseases. The government should provide leadership to set the agenda and show the way, develop and implement policies (including laws and regulations) to create healthier food and activity environments, secure increased and continued funding to reduce obesogenic environments and promote healthy eating and physical activity.

ACKNOWLEDGEMENTS

T.W. and L.S. performed the initial literature search and managed the various drafts of the manuscript. T.W. is the guarantor. M.P.,
Modifying cardiovascular diseases in Fiji

D.M.L., J.F., A.A.L., R.P., L.G.P. and M.T. aided with the design, and critically revised the manuscript for important intellectual content. All authors gave final approval for publication.

DECLARATION OF CONFLICTING INTERESTS
All authors declare that they have no conflict of interest.

FUNDING
None.

ETHICAL APPROVAL
Not required.

References

Modifying cardiovascular diseases in Fiji

Modifying cardiovascular diseases in Fiji

